Gabarito – Erros

Exercício 1:

(a) Como o expoente máximo é \((15)_{10}\), então o número de bits para o expoente é 5 (lembrando que o número de bits do expoente – abreviado por n.e. – é encontrado através da relação \(e_{\text{max}} = 2^{n.e. - 1} - 1\)).

Assim, montamos a seguinte tabela que relaciona os 5 bits com os expoentes:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Exponente</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>-14 (forma desnormalizada)</td>
</tr>
<tr>
<td>00001</td>
<td>-14</td>
</tr>
<tr>
<td>00010</td>
<td>-13</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>01101</td>
<td>-2</td>
</tr>
<tr>
<td>01110</td>
<td>-1</td>
</tr>
<tr>
<td>01111</td>
<td>0</td>
</tr>
<tr>
<td>10000</td>
<td>+1</td>
</tr>
<tr>
<td>10001</td>
<td>+2</td>
</tr>
<tr>
<td>10010</td>
<td>+3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>11101</td>
<td>+14</td>
</tr>
<tr>
<td>11110</td>
<td>+15</td>
</tr>
<tr>
<td>11111</td>
<td>∞, NaN ou Indeterminação</td>
</tr>
</tbody>
</table>

O menor número positivo representável nesta máquina na forma **normalizada** deve ter o menor expoente (00001), zeros na mantissa, além do bit 0 para o sinal do número, que é positivo. Então, temos:

\[
0 \ 00001 \ 00000000
\]

\[
\frac{0}{s.n.} \ \text{exp} \ \text{mantissa}
\]

\[
1,00000000 \times 2^{-14} \approx 6,1035 \times 10^5
\]

O menor número mesmo está na forma **desnormalizada** e deve ter como menor expoente 00000. Assim, temos:

\[
0 \ 00000 \ 000000001
\]

\[
\frac{0}{s.n.} \ \text{exp} \ \text{mantissa}
\]

\[
0,00000001 \times 2^{-14} \approx 0,0238 \times 10^5
\]

(b) O maior número positivo representável nesta máquina deve ter o maior expoente (11110), 1’s na mantissa, além do bit 0 para o sinal positivo do número. Então, temos:

\[
0 \ 11110 \ 1111111
\]

\[
\frac{0}{s.n.} \ \text{exp} \ \text{mantissa}
\]

\[
1,11111111 \times 2^{15} = (2^9 + 2^8 + 2^7 + \ldots + 2^0) \times 2^{15} = 2^{17} + 2^8 + 2^9 + \ldots + 2^{15} = 2^{16} - 2^7 = 65536 - 128 = 65408
\]

(c) 12,37 = 12 + 0,37

<table>
<thead>
<tr>
<th>Parte inteira:</th>
<th>Parte fracionária:</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
0,37 \times 2 = 0,74
\]

\[
0,74 \times 2 = 1,48
\]

\[
0,48 \times 2 = 0,96
\]

\[
0,96 \times 2 = 1,92
\]

\[
0,92 \times 2 = 1,84
\]

\[
0,84 \times 2 = 1,68
\]

\[
0,68 \times 2 = 1,36
\]

Em representação binária: 12,37 = 1100,0101111...
Mas, nesta máquina, que possui apenas 8 dígitos para a mantissa, temos:

\[1.10001011 \times 2^3 = 12.34375 \]

8 bits p/ mantissa

\[0 \overset{8 \text{-bit expoente}}{\overline{10010}} \overset{10 \text{-bit mantissa}}{\overline{10001011}} \]

Erro da representação: \(\epsilon = 12.37 - 12.34375 = 0.02625 \)

Exercício 2:

Polinômio de Taylor de Grau 3
\(x \in [-1,1] \)
\(x_0 = 0 \)
\(f(x) = e^x \)

(a)

\[P_3(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)(x-x_0)^2}{2} + \frac{f'''(x_0)(x-x_0)^3}{3!} \]

quando \(x = 0.5 \):

\[P_3(0.5) = e^0 + e^0 \cdot 0.5 + \frac{e^0 \cdot (0.5)^2}{2} + \frac{e^0 \cdot (0.5)^3}{6} \]

\[= 1 + 0.5 + 0.125 + \frac{(0.5)^3}{6} \]

\[= 1.645833333 \]

(b) Limitante superior para o erro:

\[|E_3(x)| \leq \left| \frac{f^{(iv)}(x)}{4!} \right| \cdot \max |x-x_0|^4 \]

Lembrando que \(0 < \epsilon < 0.5 \)

\[f^{(iv)}(0) = 1 \]
\[f^{(iv)}(0.5) = e^{0.5} = 1.648721271 > 1 \] (logo, esse vai ser o valor usado para o limitante)

\[|E_3(0.5)| \leq \frac{e^{0.5} \cdot (0.5)^4}{24} = 4.29 \times 10^{-3} \]
Exercício 3:

(a)

\[P_2(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)(x-x_0)^2}{2} \]

\[x = 47^\circ = \frac{47\pi}{180} \text{ rad} \]

\[x_0 = 45^\circ = \frac{\pi}{4} \text{ rad} \]

\[f(x) = \sin(x) \]

\[f'(x) = \cos(x) \]

\[f''(x) = -\sin(x) \]

\[P_2(x) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4}\right) - \frac{\sqrt{2}}{4} \left(x - \frac{\pi}{4}\right)^2 \]

\[P_2\left(\frac{47\pi}{180}\right) = 0.73135867 \]

(b) fazer com \(\eta = 3 \)

(c)

Usando polinômio de Grau 2:

\[\int_0^{47\pi/180} P_2(x) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4}\right) - \frac{\sqrt{2}}{4} \left(x - \frac{\pi}{4}\right)^2 \] \[= \left[\frac{\sqrt{2}}{2} x^{47\pi/180} \right]_0 + \left[\frac{\sqrt{2}}{4} \left(x - \frac{\pi}{4}\right)^2 \right]_0^{47\pi/180} - \left[\frac{\sqrt{2}}{12} \left(x - \frac{\pi}{4}\right)^3 \right]_0^{47\pi/180} \]

\[= 0.305283626 \]

Erro associado:

\[E = \int_0^{47\pi/180} \sin(x) - P_2(x) \approx 0.012718013 \]
Exercícios:

(a)

\[I_1 = \frac{1}{e} \]

\[I_2 = 1 - \frac{2}{e} = 1 - 2! \left(\frac{1}{e} \right) \]

\[I_3 = 1 - 3 + \frac{3 \cdot 2}{e} = 1 - 3! \frac{3!}{2!} + \frac{3!}{e} = 1 - 3! \left(\frac{1}{2!} - \frac{1}{e} \right) \]

\[I_4 = 1 - 4 \left(1 - 3 + \frac{3 \cdot 2}{e} \right) = 1 - 4 + 4 \cdot 3 - \frac{4 \cdot 3 \cdot 2}{e} = 1 - 4! \frac{4!}{2!} - \frac{4!}{e} = 1 - 4! \left(\frac{1}{3!} - \frac{1}{2!} + \frac{1}{e} \right) \]

\[I_5 = 1 - 5 \left(1 - 4 + 4 \cdot 3 - \frac{4 \cdot 3 \cdot 2}{e} \right) = 1 - 5 + 5 \cdot 4 - 5 \cdot 4 \cdot 3 + \frac{5 \cdot 4 \cdot 3 \cdot 2}{e} = 1 - 5! \frac{5!}{4!} - \frac{5!}{3!} + \frac{5!}{2!} + \frac{5!}{e} = 1 - 5! \left(\frac{1}{4!} - \frac{1}{3!} + \frac{1}{2!} - \frac{1}{e} \right) \]

...

Assim, deduzimos que a fórmula para \(I_n \) é:

\[I_n = 1 - n! \left[\frac{1}{(n-1)!} - \frac{1}{(n-2)!} + \frac{1}{(n-3)!} - \frac{1}{(n-4)!} - \ldots - (-1)^{n-1} \frac{1}{e} \right] \]

Então,

\[I_{100} = 1 - 100! \left(\frac{1}{99!} - \frac{1}{98!} + \frac{1}{97!} - \ldots - \frac{1}{2!} + \frac{1}{e} \right) \]

\[= 1 - 100! \left(\frac{1}{99!} + \frac{1}{97!} + \ldots + \frac{1}{3!} + \frac{1}{e} \right) << 0 \]

\[= -0.718281803 \text{(na calculadora)} \]

(b)

\[I_{200} = \frac{1}{201} \]

\[I_{199} = \frac{1 - I_{200}}{200} = \frac{1 - (1/201)}{200} = \frac{200}{201} = \frac{1}{201} \]

\[I_{198} = \frac{1}{201} \]

\[I_{100} = \frac{1}{201} = 0.004975 \]
como em (b), \(0 \leq \frac{1}{201} \leq \frac{1}{101}\), portanto o erro é maior em (a). A melhor maneira de calcular, então, é usar
\[I_{n+1} = \left(1 - \frac{1}{n+1}\right), \]
porque em todas as iterações o resultado sempre converge para \(\frac{1}{201}\).

Exercício 5:

Uma das mais importantes de todas as séries divergentes é a série harmônica

\[\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \ldots \]

A série harmônica surge em conexão com os sons harmônicos produzidos pela vibração de uma corda musical. Não é evidente que esta série diverge. Entretanto, a divergência se tornará aparente quando examinarmos as somas parciais em detalhe. Como os termos da série são todos positivos, a soma parcial

\[S_1 = 1; \]
\[S_2 = 1 + \frac{1}{2}; \]
\[S_3 = 1 + \frac{1}{2} + \frac{1}{3}; \]
\[S_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}; \]

... forma uma sequência estritamente crescente

\[S_1 < S_2 < S_3 < \ldots < S_n < \ldots \]

Podemos provar a divergência demonstrando que não há nenhuma constante M (cota superior para a sequência) que seja maior ou igual que suas somas parciais (veja o teorema no final do exercício). Para este fim, consideraremos algumas somas parciais selecionadas, isto é, \(S_2, S_4, S_8, S_{16}, S_{32}, \ldots\). Note que os índices são potências sucessivas de 2, de modo que essas são as somas parciais da forma \(S_{2^n}\). Essas somas parciais satisfazem as desigualdades:

\[S_2 = 1 + \frac{1}{2} > \frac{1}{2} + \frac{1}{2} = \frac{2}{2} \]
\[S_4 = S_2 + \frac{1}{3} + \frac{1}{4} > S_2 + \left(\frac{1}{4} + \frac{1}{4}\right) = S_2 + \frac{1}{2} > \frac{3}{2} \]
\[S_8 = S_4 + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} > S_4 + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) = S_4 + \frac{1}{2} > \frac{4}{2} \]
Se \(M \) é uma constante qualquer, podemos achar o inteiro positivo \(n \) tal que \((n+1)/2 > M\). No entanto, para este \(n \)

\[
S_{2^n} > \frac{n+1}{2} > M
\]
de modo que nenhuma constante \(M \) é maior ou igual que cada soma parcial da série harmônica. Isso prova a divergência.

Teorema:

Se uma sequência \(\{S_n\} \) for crescente a partir de um certo termo, então existem duas possibilidades:

(a) Existe uma constante \(M \), chamada de cota superior para a sequência, tal que se \(S_n \leq M \) para todo \(n \) a partir de um certo termo, e, neste caso, a sequência converge a um limite \(L \) satisfazendo \(L \leq M \).

(b) Não existe cota superior, e neste caso, \(\lim_{n \to \infty} S_n = +\infty \)

Exercício 6:

\(n = 100 \)

Procedimento (a): \(x = -5 \)

\[
e^{-5} = \sum_{i=0}^{100} \frac{(-5)^i}{i!} = 1 + (-5) + \frac{(-5)^2}{2!} + \frac{(-5)^3}{3!} + \ldots + \frac{(-5)^{100}}{100!} = -146,4465 = -146446,5 \times 10^{-3}
\]

Procedimento (b): \(x = 5 \)

\[
e^{-5} = \frac{1}{e^5} = \frac{1}{\sum_{i=0}^{100} \frac{5^i}{i!}} = \frac{1}{1 + 5 + \frac{5^2}{2!} + \frac{5^3}{3!} + \ldots + \frac{5^{100}}{100!}} = \frac{1}{148,4123} = 6.737986003 \times 10^{-3}
\]

O procedimento (b) é o melhor!