
Decidability of a Syntactic Fragment of the

Hybrid Computation Tree Logic with the ↓
Operator

Mario R. F. Benevides∗ L. Menasché Schechter†

{mario,luis}@cos.ufrj.br

Abstract

Hybrid logics with the ↓ operator are generally undecidable. In this
paper, we present a fragment of the hybrid CTL with the ↓ operator
(HCTL(@,↓)), called the reducible fragment, that has the same complexity
for the satisfiability problem as standard CTL (EXPTIME-Complete). In
order to prove this, we show that the satisfiability problem for a formula
in this fragment can be polynomially reduced to the satisfiability problem
for a formula in the hybrid CTL without the ↓ operator (HCTL(@)).

1 Introduction

The branching-time temporal logic known as Computation Tree Logic, or CTL,
was developed as a tool to reason about concurrent or nondeterministic systems.
It is a very used logic for automated verification (model-checking) of computer
software and hardware specifications, because of its polynomial-time model-
checking complexity [6].

CTL was first introduced by Emerson and Clarke in [8]. Emerson and
Halpern, in [9], presented a complete axiomatization for this logic, established a
finite model property for it and provided an exponential time decision procedure
for its satisfiability problem. What allowed these three results to be proven was
the development of a completeness proof based on finitary models.

Hybrid logics are extensions of modal logics that allow explicit references to
individual states of a model. Their goal is to extend the expressive power of
ordinary modal logics, without losing their good properties, such as decidability.

However, the task of increasing the expressive power of a language without
losing decidability is not so easy. For instance, one hybrid operator that is very
expressive and very appealing is the ↓ operator. But, as [4] and [2] show, hybrid
logics with this operator are generally undecidable. This has motivated research
on decidable fragments of such logics.

∗Computer Science Department and Systems and Computer Engineering Program, Federal

University of Rio de Janeiro, Brazil. The author was partially supported by a grant from

CNPq.
†Systems and Computer Engineering Program, Federal University of Rio de Janeiro, Brazil.

The author was supported by a D.Sc. scholarship from CNPq.

1

In order to bring back decidability in the presence of the ↓ operator, the logic
has to be somehow restricted. The restrictions fall into two broad categories:
semantic restrictions and syntactic restrictions.

Semantic restrictions impose conditions on the models in which the formulas
of the logic are evaluated. [11] shows that the basic hybrid logic with the ↓
operator is decidable if the models are restricted to linear transitive structures
and [15] shows an analogous result with the restriction to transitive tree models.
Another semantic restriction involves limiting the out-degree of every state in
the model to a fixed upper-bound. [17] shows that, with any such finite upper-
bound, the basic hybrid logic with the ↓ operator is decidable.

Syntactic restrictions impose conditions on the construction of formulas,
allowing only certain types of interaction between the operators of the language
(mainly between ↓ and the other operators). [1] shows that, for a series of hybrid
logics, the fragment in which the ↓ operator cannot appear inside the scope of
any other operator (including another ↓) is decidable. Later, this fragment was
extended to a larger one in the (seemingly independent) works [18, 11, 17]. Their
fragment, called innocent fragment in [18], existential fragment in [11] and FHL\
� ↓ in [17], consists of the set of formulas that, when put in negation normal
form, do not have a ↓ appearing inside the scope of any universal operator of the
language. This fragment is larger than the previous one because the ↓ operator
can now appear inside the scope of some operators (including another ↓). [17]
goes further and present an even larger fragment, called FHL\� ↓ �, consisting
of the set of formulas that, when put in negation normal form, do not have any
↓ that simultaneously has an universal operator in its scope and is inside the
scope of an universal operator.

The investigation of hybrid temporal logics with the ↓ operator goes back to
a series of papers by Goranko [12, 13, 14]. [12] is also the paper that introduces
the ↓ operator for hybrid logics. However, only [14], that introduces a branching-
time temporal logic that is strong enough to express all CTL∗ formulas and [19],
that explicitly mix the CTL operators and the hybrid operators, explore hybrid
extensions of the Computation Tree Logic. Nevertheless, both of them make a
restriction to tree models.

Our goal in this paper is to explore the hybrid extension of CTL with the
↓ operator with no restrictions on the shape of the models. In order to keep
decidability, we analyze a syntactic fragment similar to the one presented in
[18], [11] and [17]. We call it the reducible fragment.

The rest of this paper is organized as follows. In section 2, we present the
syntax and semantics of CTL. In section 3, we introduce some of the main re-
sources that are available in hybrid logics and define the syntax and semantics
of the hybrid-CTL with (HCTL(@,↓)) and without the ↓ operator (HCTL(@)).
We also present the syntactic fragments of HCTL(@,↓) that are the object of
our study: the reducible, co-reducible, strongly reducible and unreducible frag-
ments. In section 4, we prove that the satisfiability problem for formulas in the
reducible fragment is decidable and its complexity is EXPTIME-Complete, the
same complexity of standard CTL. Finally, in section 5, we state our concluding
remarks.

2

2 Computation Tree Logic

In this section, we present the syntax and semantics of the temporal logic CTL.

Definition 2.1. The CTL language is a language consisting of a set Φ of count-
ably many proposition symbols (the elements of Φ are denoted by p, q, . . .), the
boolean connectives ¬, ∧ and ∨ and the temporal operators EX, AX, EU, AU,
ER and AR. The formulas are defined as follows:

φ ::= p | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | EXφ | AXφ | E(φ1Uφ2) | A(φ1Uφ2) |

E(φ1Rφ2) | A(φ1Rφ2).

We freely use the standard boolean abbreviations ⊤ ≡ p ∨ ¬p, ⊥ ≡ p ∧ ¬p,
φ1 → φ2 ≡ ¬φ1 ∨ φ2 and φ1 ↔ φ2 ≡ (φ1 → φ2) ∧ (φ2 → φ1) and also the
following abbreviations: EFφ ≡ E(⊤Uφ), AFφ ≡ A(⊤Uφ), AGφ ≡ ¬EF¬φ
and EGφ ≡ ¬AF¬φ. It should be noted that we could write EU(φ1, φ2),
AU(φ1, φ2), ER(φ1, φ2) and AR(φ1, φ2), but the infix notation is more com-
mon.

We now define the structures in which we evaluate formulas in CTL (and in
modal logics in general): frames and models.

Definition 2.2. A frame for CTL is a pair F = (V,R), where V is a set (finite
or not) of states and R is a binary serial relation over V, i.e., R ⊆ V × V and,
for all v ∈ V , there is a w ∈ V such that vRw.

Definition 2.3. A model for CTL is a pair M = (F ,V), where F is a frame
and V is a valuation function mapping proposition symbols into subsets of V ,
i.e., V : Φ 7→ 2V .

Definition 2.4. A ω-path in a model is an infinite sequence P = (v1, v2, . . .)
of states, such that viRvi+1, for i ≥ 1. If v is the first element of the sequence
P , we say that P starts at v. The finite sequence constructed with the first k
elements of P is called the k-prefix of P and denoted by Pk.

The semantical notion of satisfaction for CTL is defined as follows:

Definition 2.5. Let M = (F ,V) be a model. The notion of satisfaction of a
formula φ in a model M at a state v, notation M, v φ, can be inductively
defined as follows:

1. M, v p iff v ∈ V(p);

2. M, v ¬φ iff M, v 6 φ;

3. M, v φ1 ∧ φ2 iff M, v φ1 and M, v φ2;

4. M, v φ1 ∨ φ2 iff M, v φ1 or M, v φ2;

5. M, v EXφ iff there is a w ∈ V such that vRw and M, w φ;

6. M, v AXφ iff for all w ∈ V such that vRw, M, w φ;

7. M, v E(φ1Uφ2) iff there is a ω-path P starting at v such that, for at
least one k ≥ 1, the elements of Pk = (v1, . . . , vk) satisfy M, vk φ2 and
M, vi φ1, for 1 ≤ i < k;

3

8. M, v A(φ1Uφ2) iff for all ω-paths P starting at v, there is at least one
k ≥ 1, such that the elements of Pk = (v1, . . . , vk) satisfy M, vk φ2 and
M, vi φ1, for 1 ≤ i < k.

9. M, v E(φ1Rφ2) iff there is a ω-path P starting at v such that either
M, vi φ2 for all vi ∈ P or, for at least one k ≥ 1, the elements of
Pk = (v1, . . . , vk) satisfy M, vk φ1 and M, vi φ2, for 1 ≤ i ≤ k;

10. M, v A(φ1Rφ2) iff for all ω-paths P starting at v, either M, vi φ2

for all vi ∈ P or, for at least one k ≥ 1, the elements of Pk = (v1, . . . , vk)
satisfy M, vk φ1 and M, vi φ2, for 1 ≤ i ≤ k;

Definition 2.6. Two formulas φ1 and φ2 are semantically equivalent (or just
equivalent), denoted by φ1 ≡ φ2, if M, v φ1 if and only if M, v φ2, for any
model M and any v ∈ M1.

From definition 2.5, it is not difficult to see that the operators of the language
are related through the following semantic equivalences: ¬¬φ ≡ φ, φ1 ∨ φ2 ≡
¬(¬φ1 ∧¬φ2), AXφ ≡ ¬EX¬φ, E(φ1Rφ2) ≡ ¬A(¬φ1U¬φ2) and A(φ1Rφ2) ≡
¬E(¬φ1U¬φ2).

If M, v φ, we say that φ is satisfied in the model M at the state v. We
also say that a formula φ is satisfiable iff there is a model M and a state v ∈ M
such that M, v φ. The problem of deciding whether a given formula of the
logic is satisfiable or not is called the satisfiability problem.

Theorem 2.7 ([7]). The satisfiability problem for CTL formulas is decidable,
having EXPTIME-Complete complexity.

A formula φ is valid in a frame F (F φ) iff for every model M of the
frame F and every state v ∈ M, M, v φ. φ is valid (φ) iff it is valid in all
frames.

3 Hybrid Extensions of CTL

A good way to improve the expressive power of a modal logic is to consider
hybrid extensions of it. The fundamental resource that allows a logic to be
called “hybrid” is a set of nominals. Nominals are a new kind of atomic symbol
and they behave similarly to proposition symbols. The key difference between
a nominal and a proposition symbol is related to their valuation in a model.
While the set V(p) for a proposition symbol p can be any element of 2V , the set
V(i) for a nominal i has to be a singleton set. This way, each nominal is true
at exactly one state of the model, and thus, can be used to refer to this unique
state. This is why these logics are called “hybrid”: they are still modal logics,
but they have the capacity to refer to specific states of the model, like in first-
order logic. Hybrid logics may also have state-variables, the ↓ operator, which
binds a state-variable to the current state, and the satisfaction operators @i

and @x, for each nominal i and each state-variable x, which evaluate formulas
in specific states of the model. For a general introduction to hybrid logics, [3]
and [4] can be consulted.

1v ∈ M means that v ∈ V , where V is the set of states of M.

4

In this section, we present two hybrid extensions of CTL. The first does not
have state-variables and the ↓ operator, while the second has. We show that this
very small difference in the language results in a huge difference in complexity:
the satisfiability problem for the first logic is no more difficult than the one for
standard CTL, while for the second logic it is undecidable.

3.1 HCTL(@)

Definition 3.1. The HCTL(@) language is a hybrid language consisting of a
set Φ of countably many proposition symbols (the elements of Φ are denoted by
p, q, . . .), a set Ω of countably many nominals (the elements of Ω are denoted by
i, j, . . .), such that Φ ∩Ω = ∅, the boolean connectives ¬, ∧ and ∨, the temporal
operators of CTL and the operators @i, for each nominal i (called satisfaction
operators). The formulas are defined as follows:

φ ::= p | i | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | Xφ | U(φ1, φ2) | @iφ,

where X ∈ {EX,AX} and U ∈ {EU,AU,ER,AR}.

The definition of a frame for HCTL(@) is the same as definition 2.2, but the
definition of a model for HCTL(@) is slightly different from definition 2.3.

Definition 3.2. A model for HCTL(@) is a pair M = (F ,V), where F is a
frame and V is a valuation function mapping proposition symbols into subsets
of V , i.e., V : Φ 7→ 2V and mapping nominals into singleton subsets of V , i.e, if
i is a nominal then V(i) = {v} for some v ∈ V . We call this unique state that
belongs to V(i) the denotation of i under V. We can also say that i denotes
the single state belonging to V(i) or that i names this single state.

The semantical notion of satisfaction for HCTL(@) is defined as follows:

Definition 3.3. The notion of satisfaction for formulas in HCTL(@) is defined
adding two extra clauses to the satisfaction definition of CTL (definition 2.5):

1. M, v i iff v ∈ V(i);

2. M, v @iφ iff M, d φ, where d is the denotation of i under V;

For each nominal i, the formula @iφ means that if V(i) = {v} then φ is
satisfied at v.

CTL can be polynomially translated into the Modal Mu-Calculus, a modal
logic with a least-fixpoint operator [5]. [16] proposes a hybrid extension of the
Mu-Calculus in which not only standard CTL formulas can be expressed, but
so can formulas that use nominals and satisfaction operators. We can then
polynomially translate HCTL(@) into Sattler and Vardi’s Hybrid Mu-Calculus.
This provides a decidability result for HCTL(@), based on the following result:

Lemma 3.4 ([16]). The satisfiability problem for Hybrid Mu-Calculus formulas
is decidable, having EXPTIME-Complete complexity.

Theorem 3.5. The satisfiability problem for HCTL(@) formulas is decidable,
having EXPTIME-Complete complexity.

Proof. EXPTIME-hardness follows from theorem 2.7 and the EXPTIME upper-
bound follows from lemma 3.4.

5

3.2 HCTL(@,↓)

Definition 3.6. The HCTL(@,↓) language is a hybrid language consisting of a
set Φ of countably many proposition symbols (the elements of Φ are denoted by
p, q, . . .), a set Ω of countably many nominals (the elements of Ω are denoted
by i, j, . . .), a set S of countably many state-variables (the elements of S are
denoted by x, y, . . .), such that Φ, Ω and S are pairwise disjoint, the boolean
connectives ¬, ∧ and ∨, the temporal operators of CTL, the ↓ operator and
the operators @i, for each nominal i, and @x, for each state-variable x. The
formulas are defined as follows:

φ ::= p | i | x | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | Xφ | U(φ1, φ2) | @iφ | @xφ |↓ x.φ,

where X ∈ {EX,AX} and U ∈ {EU,AU,ER,AR}.

The definition of a frame and a model for HCTL(@,↓) are the same as
definitions 2.2 and 3.2, respectively.

In order to deal with the state-variables, we need to introduce the notion of
assignments.

Definition 3.7. An assignment is a function g that maps state-variables to
states of the model, i.e., g : S 7→ V . We use the notation g′ = g[v1/x1, . . . , vn/
xn] to denote an assignment such that g′(x) = g(x) if x /∈ {x1, . . . , xn} and
g′(xi) = vi, otherwise.

The semantical notion of satisfaction for HCTL(@,↓) is defined as follows:

Definition 3.8. The notion of satisfaction of a formula φ in a model M at a
state v with an assignment g, notation M, g, v φ, is inductively defined adding
the assignment g to all the clauses in definitions 2.5 and 3.3 and the following
three extra clauses:

1. M, g, v x iff g(x) = v;

2. M, g, v @xφ iff M, d φ, where d = g(x);

3. M, g, v ↓ x.φ iff M, g[v/x], v φ.

The formula ↓ x.φ means that, using x as a name for the present state
(state-variables can be thought as “on-the-fly nominals”), φ is satisfied. The ↓
operator is the only operator that binds a variable. Free and bounded variables
are defined in the usual way. The only case worth mentioning is that in the
formula @xψ, x is free. A sentence is a formula with no free variables.

Definition 3.9. A formula of HCTL(@,↓) is in negation normal form (NNF) if
the negation symbol (¬) appears only in front of proposition symbols, nominals
and state-variables.

Lemma 3.10. Every formula of HCTL(@,↓) is semantically equivalent to a
formula in NNF.

Theorem 3.11 ([2]). The satisfiability problem for HCTL(@,↓) is undecidable.

6

This result shows that the inclusion of state-variables and the ↓ operator
turns a logic that had the same complexity of the standard CTL into an unde-
cidable logic. In order to bring back decidability, we need to consider fragments
of HCTL(@,↓). As discussed in section 1, we can do this using semantic or
syntactic restrictions.

In this work, as we do not want to impose any restrictions on the shape
of the models, we use a syntactic restriction to obtain a decidable fragment
of HCTL(@,↓). This syntactic fragment is an extension that includes all CTL
operators of the fragment presented as the innocent fragment in [18], existential
fragment in [11] and FHL \ � ↓ in [17]. We call our fragment the reducible
fragment, because, in our opinion, this denomination highlights the key property
of this fragment, which is used to prove its decidability.

Definition 3.12. Let O be any operator of HCTL(@,↓), excluding ¬ and ↓.
We say that O is an existential operator if the satisfaction of the formula Oφ
depends on φ being satisfied at a single state or if it does not even depend on
the satisfaction of φ (e.g.: E(φ1Rφ2) may still be satisfied even if φ1 is never
satisfied in the model) and that O is an universal operator if the satisfaction
of the formula Oφ may depend on φ being satisfied at multiple states. If O is
a binary operator O(φ1, φ2) (like AU and ∧), we have to check whether it is
existential or universal with respect to each operand. Thus, the boolean oper-
ators, the satisfaction operators and EX are existential and AX is universal.
AU and AR are universal with respect to both operands, EU is existential with
respect to the second operand and universal with respect to the first and ER is
existential with respect to the first and universal with respect to the second.

Definition 3.13. A formula φ of HCTL(@,↓) belongs to the reducible frag-
ment (RF) iff, when put in NNF, there is no ↓ occurring inside the scope of an
universal operator. It is important to see that RF is not closed under negation.

Definition 3.14. We can also define three other fragments related to the re-
ducible fragment:

1. The co-reducible fragment (co-RF): φ ∈ co-RF iff ¬φ ∈ RF.

2. The strongly reducible fragment (SRF): φ ∈ SRF iff φ ∈ RF and ¬φ ∈
RF. An equivalent definition is SRF = RF ∩ co-RF.

3. The unreducible fragment (UF): φ ∈ UF iff φ /∈ RF and ¬φ /∈ RF. An
equivalent definition is UF = HCTL(@, ↓) \ (RF ∪ co-RF).

Example 3.15. It is easy to see that HCTL(@) is a subset of SRF.

Example 3.16. φ = E(pU(↓ x.EXx)) belongs to RF, since EU is existential
with respect to the second operand. On the other hand, φ = E((↓ x.EXx)Up)
belongs to UF, since EU is universal with respect to the first operand, ¬φ =
A((↓ x.AX¬x)R¬p) and AR is universal with respect to both operands.

4 Decidability of the Reducible Fragment

In this section, we show that the satisfiability problem for sentences in RF is
decidable. Moreover, it has the same complexity as the satisfiability problem

7

for standard CTL. Our restriction to sentences is not a serious limitation, since
free state-variables can always be substituted by fresh nominals. The first thing
we need to do is to define the semantics of a new hybrid binder: ∃.

Definition 4.1. We add to the language formulas of the form ∃x.α, where x is
a state-variable. The satisfaction of this kind of formula is defined as follows:

M, g, v ∃x.φ iff there is a w ∈ V such that M, g[w/x], v φ.

This new binder is useful because of the semantic equivalence ↓ x.φ ≡ ∃x.(x∧
φ) and the following lemma:

Lemma 4.2. The following are semantic equivalences, if x does not have free
occurrences in the formulas and is not bound by any other operator besides the
highlighted ∃:

1. φ1 ∧ ∃x.φ2 ≡ ∃x.(φ1 ∧ φ2);

2. φ1 ∨ ∃x.φ2 ≡ ∃x.(φ1 ∨ φ2);

3. EX∃x.φ ≡ ∃x.EXφ;

4. E(φ1U∃x.φ2) ≡ ∃x.E(φ1Uφ2);

5. E(∃x.φ1Rφ2) ≡ ∃x.E(φ1Rφ2);

6. @i∃x.φ ≡ ∃x.@iφ;

7. @y∃x.φ ≡ ∃x.@yφ.

This lemma shows that the ∃ operator commutes with every existential op-
erator of HCTL(@,↓). With it, we can now prove the following theorem, that
shows why the reducible fragment has this name.

Theorem 4.3 (Reduction Theorem). Every sentence φ of RF can be reduced to

a formula φ̃ of HCTL(@) such that φ is satisfiable if and only if φ̃ is satisfiable.

We use the notation φ φ̃ to denote that φ can be reduced to φ̃.

Proof. First, we rename the state-variables in φ so that no state-variable has
free and bound occurrences in φ and so that no state-variable is bound by more
than one ↓ operator. Then, we put φ in NNF, obtaining φ′. As φ ∈ RF, there
is no ↓ inside the scope of any universal operator in φ′. Now, we substitute
every subformula of the form ↓ x.ψ in φ′ by ∃x.(x ∧ ψ), obtaining φ′′. As there
was no ↓ inside the scope of any universal operator in φ′, there is no ∃ inside
the scope of any universal operator in φ′′. We can then use lemma 4.2 and
rewrite φ′′ as a formula of the form φ′′′ = ∃x1.∃x2. . . . ∃xn.α. Until now, we
have φ ≡ φ′ ≡ φ′′ ≡ φ′′′. As the last step, we replace each variable xk bound
by a ∃ operator by a distinct nominal (denoted by ixk

) not occurring in φ′′′,

obtaining φ̃.
Now we prove that φ is satisfiable if and only if φ̃ is satisfiable.
(⇒) Let M = (F ,V) be a HCTL(@,↓) model, g an assignment and v

a state in M such that M, g, v φ. As φ ≡ φ′′′, M, g, v φ′′′. Since
φ′′′ = ∃x1.∃x2. . . . ∃xn.α, there is a tuple (m1, . . . ,mn) of states such that

M, g[m1/x1, . . . ,mn/xn], v α. It follows that M′, g, v φ̃, where M′ =

8

(F ,V′) and V′ differs from V only on the evaluation of the new nominals ixk
,

for which V′(ixk
) = {mk}.

(⇐) Let M = (F ,V) be a HCTL(@,↓) model, g an assignment and v a state

in M such that M, g, v φ̃. Hence, there is a tuple (m1, . . . ,mn) of states,
with V(ixk

) = {mk}, such that M, g[m1/x1, . . . ,mn/xn], v α. It follows that
M, g, v ∃x1.∃x2. . . . ∃xn.α, that is M, g, v φ′′′. As φ′′′ ≡ φ, M, g, v φ.

Theorem 4.4. The satisfiability problem for sentences in the reducible fragment
is decidable, having EXPTIME-Complete complexity.

Proof. EXPTIME-hardness follows from theorem 2.7. As for the upper-bound,
it is not difficult to see that theorem 4.3 provides a method to polynomially
transform a sentence φ of RF into a equi-satisfiable formula φ̃ of HCTL(@).

From theorem 3.5, the satisfiability of φ̃ can be checked in EXPTIME, providing
the desired upper-bound.

5 Concluding Remarks

The logic HCTL(@,↓) is undecidable. In this paper, we present a fragment of
this logic, called reducible fragment (RF), for which the satisfiability problem
is decidable and has the same complexity as for standard CTL (EXPTIME-
Complete). This fragment is built using a syntactic restriction on the formulas,
which allows the satisfiability problem of RF to be reduced to the satisfiability
problem of HCTL(@).

As our next steps, we want to use the Reduction Theorem as a tool to
show the finite model property for the reducible fragment and to prove a weak
completeness result for an axiomatic system for the co-reducible fragment.

It would also be interesting to investigate the complexity of the model-
checking problem for HCTL(@,↓). Without any restriction, its complexity is
PSPACE-hard [10]. As one of the reasons why CTL is a very attractive logic
is exactly its polynomial-time model-checking complexity [6], it is interesting
to research convenient fragments of HCTL(@,↓) in which the model-checking
problem can be somehow simplified, similarly to what was done in this paper
with respect to the satisfiability problem.

References

[1] C. Areces. Logic Engineering: The Case of Description and Hybrid Logics.
PhD thesis, ILLC, University of Amsterdam, 2000.

[2] C. Areces, P. Blackburn, and M. Marx. A road-map on complexity for
hybrid logics. In Proceedings of the 8th Conference of the EACSL, volume
1683 of LNCS, pages 307–321. Springer, 1999.

[3] C. Areces and B. ten Cate. Hybrid logics. In Handbook of Modal Logics,
pages 821–868. Elsevier, 2006.

[4] P. Blackburn. Representation, reasoning, and relational structures: a hy-
brid logic manifesto. Logic Journal of the IGPL, 8(3):339–365, 2000.

9

[5] J. Bradfield and C. Stirling. Modal mu-calculi. In Handbook of Modal Logic,
pages 721–756. Elsevier, 2006.

[6] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
2000.

[7] E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical
Computer Science, Volume B: Formal Models and Semantics, pages 995–
1072. North-Holland Pub. Co./MIT Press, 1990.

[8] E. A. Emerson and E. M. Clarke. Using branching time temporal logic to
synthesize synchronization skeletons. Science of Computer Programming,
2(3):241–266, 1982.

[9] E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness
in the temporal logic of branching time. Journal of Computer and Systems
Science, 30(1):1–24, 1985.

[10] M. Franceschet and M. de Rijke. Model checking hybrid logics (with an
application to semistructured data). Journal of Applied Logic, 4(3):279–
304, 2006.

[11] M. Franceschet, M. de Rijke, and B. H. Schlingloff. Hybrid logic on linear
structures: expressivity and complexity. In Proceedings of the 10th Int.
Symp. on Temporal Representation and Reasoning and 4th Int. Conf. on
Temporal Logic, pages 166–173. IEEE Computer Society Press, 2003.

[12] V. Goranko. Temporal logic with reference pointers. In Proceedings of the
1st International Conference in Temporal Logic, volume 827 of LNAI, pages
133–148. Springer, 1994.

[13] V. Goranko. Hierarchies of modal and temporal logics with reference point-
ers. Journal of Logic, Language and Information, 5(1):1–24, 1996.

[14] V. Goranko. Computation tree logics and temporal logics with reference
pointers. Journal of Applied Non-classical Logics, 10(3–4):221–242, 2000.

[15] M. Mundhenk, T. Schneider, T. Schwentick, and V. Weber. Complexity
of hybrid logics over transitive frames. In Proceedings of the 4th M4M
Workshop, volume 194 of Informatik-Berichte, pages 62–78. Humboldt-
Universität zu Berlin, 2005.

[16] U. Sattler and M. Y. Vardi. The hybrid µ-calculus. In Proceedings of the
1st International Joint Conference in Automated Reasoning, volume 2083
of LNAI, pages 76–91. Springer, 2001.

[17] B. ten Cate and M. Franceschet. On the complexity of hybrid logics with
binders. In Proceedings of the 19th International Workshop of Computer
Science Logic, volume 3634 of LNCS, pages 339–354. Springer, 2005.

[18] J. van Eijck. Constraint tableaux for hybrid logics. Available online in
http://homepages.cwi.nl/∼jve/hylotab/, 2002.

[19] V. Weber. Hybrid branching-time logics. In Proceedings of the International
Workshop on Hybrid Logic 2007, pages 51–60, 2007. Available online in
http://folli.loria.fr/cds/2007/content/id27/id27.pdf.

10

