
Programming in Lua – Iterators

Fabio Mascarenhas

http://www.dcc.ufrj.br/~fabiom/lua

http://www.dcc.ufrj.br/~fabiom/lua

Generic for

• We have seen how to use the generic for loop (or the for-in loop) using the

ipairs and pairs functions, but there is nothing special about those functions

• The Lua standard library defines other functions that work with the generic for:

• All these functions have one thing in common: they return iterators

-- for each line in "foo.txt" do...
for line in io.lines("foo.txt") do
-- for each word in line do...
for word in string.gmatch(line, "%w+") do
print(word)

end
print("------------")

end

Iterators

• An iterator is a function that, each time it is called, produces one or more values

that correspond to an item from some sequence

• Each index and value of an array

• Each key and value from a table

• Each line from a file

• Each substring that matches a pattern

• When there are no more items the iterator returns nil

Generic for and iterators

• The generic for takes the iterator returned by the calls to ipairs, pairs,

io.lines, and string.gmatch, and repeatedly calls it, assigning the values it

returns to the control variables

> iter = function ()
>> local x = math.random(4)
>> if x == 4 then
>> return nil
>> else
>> return x
>> end
>> end
> for n in iter do print(n) end
1
3
1

Closure iterators

• The simplest way to define an useful iterator is to use a closure:

• The closure that fromto returns is the iterator:

function fromto(a, b)
return function ()

if a > b then
return nil

else
a = a + 1
return a - 1

end
end

end

> for i in fromto(2, 5) do print(i) end
2
3
4
5

Stateless iterators

• If we inspect the return values of ipairs, we see that it does not return just the

iterator function:

• Moreover, it is returning the same iterator function for both both uses, so it

cannot be using a closure closing over its parameter

• What ipairs returns is a stateless iterator, its external state, and its seed

• Each iteration, the generic for calls the iterator passing both the state and the

seed, and then uses the value of the first control variable as a new seed

> print(ipairs{ 1, 4, 5 })
function: 0000000068B94970 table: 00000000003EBE90 0
> print(ipairs{ 3, 9 })
function: 0000000068B94970 table: 00000000003EC020 0

Stateless fromto

• We can define fromto using an stateless iterator if we use b as the state and the

predecessor of a as the seed:

• Notice that the iterator function does not close over any variables, as both

state and seed are parameters

function fromto(a, b)
return function (state, seed)

if seed >= state then
return nil

else
return seed + 1

end
end, b, a-1

end

> print(fromto(2, 5))
function: 0000000000420840 5 1
> print(fromto(4, 7))
function: 0000000000420840 7 3

Seedless iterator

• A variant of the stateless iterator uses a mutable value (a table, a file…) as the

state, so it does not need a seed; the state keeps track where in the iteration we

are

• This is analogous to the Java concept of iterators, as the call to next in a Java

iterator has an implicit parameter (this)

function fromto(a, b)
return function (state)

if state[1] > state[2] then
return nil

else
state[1] = state[1] + 1
return state[1] - 1

end
end, { a, b }

end

> print(fromto(2, 5))
function: 000000000042B0B0 table: 0000000000426160
> print(fromto(4, 7))
function: 000000000042B0B0 table: 0000000000426340

Quiz

• The function values returns an iterator, what does it produce? How can we turn

it from a closure to a stateless iterator?

function values(t)
local i = 0
return function ()

i = i + 1
return t[i]

end
end

