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Abstract. We give a symbolic algorithm to check whether certain holomor-

phic foliations of the complex projective plane have an algebraic solution. This
algorithm is then used to produce new examples of foliations without algebraic

solutions.

1. Introduction

The study of algebraic solutions of foliations on the complex projective plane
goes back to G. Darboux’s paper [Darboux 1878]. One of its main contributors in
the nineteenth century was H. Poincaré; at the beginning of [Poincaré 1891], he
says:

To find out if an equation of the first order and of the first degree
is algebraically integrable, it is enough to find an upper bound for
the degree of the integral; after this one need only perform some
purely algebraic calculations.

A more recent milestone in the subject was J. P. Jouanolou’s lecture notes
[Jouanolou 1979]. An often quoted result from these notes states that the set
of holomorphic foliations of the complex projective plane P2 that do not have
an algebraic solution is dense in the space that parametrizes the foliations; see
[Jouanolou 1979, ch. 4, p. 157ff]. In order to prove this result, Jouanolou had
to construct a particular example of a foliation of P2 without algebraic solutions.
However, both Jouanolou’s and later proofs of this fact depend on the many special
properties possesed by this example; see [Jouanolou 1979, p. 160ff], [Lins Neto 1988,
p. 219ff] and [Cerveau and Lins Neto 1991, p. 90]. Moreover, all the other explicit
examples of holomorphic foliations of P2 without algebraic solutions that have been
constructed are essentially variations on Jouanolou’s. See section 4 for more details.

The purpose of this paper is to use the methods of computer algebra to search
for new examples of foliations without algebraic solutions. The strategy consists
in using the Gröbner bases method to automate Poincaré’s ‘purely algebraic cal-
culations’. In this way we can write down an example of a foliation that may be
expected to have no solutions and check whether that is so using the algorithm.

Of course, Poincaré’s strategy depends on one being able to find an upper bound
for the degree of the algebraic solution of a given foliation. Although such a bound
does not always exist, a sharp bound is known for foliations with no positive rational
exponents—see section 2 for the definition. So we must first check whether a
foliation is of this type, before we try to find an algebraic solution. Luckily the
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foliations that satisfy this condition form a dense set in the space that parametrizes
holomorphic foliations of P2.

In section 2 we describe the strategy behind the algorithm, and use results from
the theory of holomorphic foliations to explain why it works. The part of the
algorithm that checks that the foliation does not have positive rational exponents
is discussed in section 3. Finally, in section 4 we give new examples of foliations
of P2 without algebraic solutions. Unlike most other examples these are quite
different from Jouanolou’s foliation. To check that the examples satisfy the required
properties we use an implementation of our algorithms in the computer algebra
system Singular; see [Greuel et al. 1998].

Acknowledgements We wish to thank Bruno Scárdua, Alcides Lins and Jorge
Vitório Pereira for their suggestions and CNPq(Brazil) and PRONEX(commutative
algebra and algebraic geometry) for financial support.

2. Holomorphic foliations

Let [z0 : z1 : z2] be homogeneous coordinates in the complex projective plane
P2. A holomorphic foliation F in P2 is given by a 1-form ω =

∑2
i=0 Aidzi where

A0, A1, A2 are homogeneous polynomials in z0, z1, z2 of degree k + 1 such that∑2
i=0 ziAi is identically zero. The singular set of F is the algebraic variety with

equations Ai = 0 for 0 ≤ i ≤ 2. It will be denoted by Sing(F).
Let Ui be the open set of P2 defined by zi 6= 0. Since U0

∼= C2, a vector
field on C2 gives rise to a 1-form on U0, and thus to another way of defining a
foliation of P2. For let x1 = z1/z0 and x2 = z2/z0 be coordinates in U0 and let P1

and P2 be polynomials in C[x1, x2] with no common factors. To the vector field
P1∂/∂x1 + P2∂/∂x2 there corresponds the 1-form α = P2dx1 − P1dx2 in the open
set U0. Denote by π : C3 \ {z0 = 0} → U0 the map

π(z0, z1, z2) = (z1/z0, z2/z0) = (x1, x2).

The pull-back π?α is a form in C3 with poles in z0 = 0. Now choose d so that
ω = zd

0π?α is a 1-form that is not divisible by z0. It is easily checked that ω
satisfies all the requirements of the first paragraph, so it determines a foliation of
P2. Moreover, it is not difficult to show that all foliations of P2 can be defined in
this way.

Of course there is nothing special about U0, and the same construction holds
equally well for both U1 and U2. However, for the sake of consistency we will
assume that the foliations in this paper are always defined by vector fields on U0.

Conventions. Let F be a foliation of P2. Throughout the paper the notation
F = F(P1, P2) means that:

(1) P1, P2 are polynomials of C[x1, x2] with no common factors, and
(2) F is defined in U0 by the vector field P1∂/∂x1 + P2∂/∂x2.

We must define what it means for an algebraic curve S of P2 to be invariant
under F . Without loss of generality we may assume that S ∩ U0 6= ∅, and that it
is the set of zeroes in U0 of a polynomial f ∈ C[x1, x2]. Let F = F(P1, P2). Then
S is invariant under F when there exists a polynomial g ∈ C[x1, x2] such that

(2.1) P1∂f/∂x1 + P2∂f/∂x2 = gf.

In this case we also say that S is an algebraic solution of F .
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Now let z ∈ P2 be a singular point of F . As in the previous paragraph, we can
assume that z ∈ U0 and that F = F(P1, P2). Then P1(z) = P2(z) = 0. Denote by
JF (z) the jacobian of (P1, P2) in z. If the eigenvalues of JF (z) are non-zero then
F is said to be non-degenerate at z, and we can compute their ratios. Following
Poincaré’s terminology in [Poincaré 1891] we call these ratios the exponents of the
singularity. A non-degenerate foliation is one which is non-degenerate at all of its
singular points. The set of all exponents of a non-degenerate foliation F will be
denoted by Exp(F).

We retain, for the moment, the notation of the previous paragraph. Let k(F) =
max{deg P1, deg P2}, and denote by P

(j)
i the homogeneous components of degree j

of the polynomial Pi. If k = k(F), let

∆i(F) = x2P
(k−i)
1 − x1P

(k−i)
2 .

These polynomials play a key rôle in the next theorem, which is at the core of the
algorithms we propose. We will denote the line z0 = 0 of P2 by L∞.

Main Theorem. Let F be a non-degenerate foliation of P2.

(1) The line L∞ is invariant under F if and only if ∆0(F) is a nonzero poly-
nomial.

(2) If ∆0(F) is identically zero and Exp(F) ∩ Q+ = ∅ then any irreducible
algebraic curve of P2 invariant under F must have degree less than or equal
to k(F).

The proof of this theorem follows by collating a number of known results in
the theory of holomorphic foliations. We give a proof here both for the sake of
completeness, and because some of the formulae will be required for our algorithm.
For a proof with a more algebraic-geometric bent, see [Bernstein and Lunts 1988,
Appendix, theorem 4, p. 241].

In the proof of the theorem we use the degree of a foliation; its definition and
properties can be found in [Lins Neto 1988, section 1.4].

Proof. Let F = F(P1, P2). In order to simplify the notation we will write k for
k(F) and ∆i for ∆i(F) throughout the proof.

Let y1 = z0/z1 and y2 = z2/z1 in U1. In these coordinates the line L∞ has
equation y1 = 0. Moreover, in U0 ∩ U1 we have that x1 = 1/y1 and x2 = y2/y1.
Performing this change of variables in the 1-form P1dx2 − P2dx1 and multiplying
the resulting form by yk+2

1 to cancel the pole, we obtain

(2.2) y1P̂1dy2 − (y2P̂1 − P̂2)dy1,

where P̂i(y1, y2) = yk
1Pi(1/y1, y2/y1). The coefficient of degree j of P̂i considered

as a polynomial in y1 with coefficients in C[y2] is P
(k−j)
i (1, y2). Thus

y2P̂1 − P̂2 = ∆0(1, y2) + y1∆1(1, y2) + y2
1S,

for some polynomial S ∈ C[x1, x2].
Suppose first that ∆0 is a nonzero polynomial. Then ∆0(1, y2) is also nonzero,

because ∆0 is homogeneous in x1 and x2. In particular, y1 does not divide y2P̂1−P̂2.
Thus F is defined in U1 by the vector field y1P̂1∂/∂y1 + (y2P̂1 − P̂2)∂/∂y2, so that
y1 = 0 is invariant under F .
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On the other hand, if ∆0 = 0 then we can cancel y1 from (2.2) so that F is
represented in U1 by the vector field

(2.3) P̂1∂/∂y1 + (∆1(1, y2) + y1S)∂/∂y2.

Now the coefficient of P̂1 of degree zero in y1 is P
(k)
1 (1, y2). But y2P

(k)
1 = P

(k)
2 6= 0,

so that P̂1 is not divisible by y1. Hence y1 = 0 is not a solution of F which completes
the proof of (1).

We now turn to (2). If ∆0(F) = 0 then F is a foliation of degree k − 1 by
[Lins Neto 1988, lemma 2, p. 203]. Let S be an irreducible algebraic curve of P2

invariant under F . Since Exp(F)∩Q+ = ∅, it follows from [Soares 1993, lemma 5.1,
p. 156] that if S is not smooth then all its singularities are normal crossings. Finally,
by [Cerveau and Lins Neto 1991, theorem 1, p. 891] we have that the degree of such
a curve S must be smaller than or equal to the degree of the foliation plus 1. Hence
deg(S) ≤ k and the proof is complete.

Corollary. We retain the notation and hypotheses of the main theorem. Suppose
that ∆0(F) = 0. Then:

(1) both P1 and P2 have degree exactly k(F);
(2) the singularities of F in L∞ ∩ U1 are given by

P
(k)
1 (1, y2) = ∆1(1, y2) = 0;

(3) The trace and the determinant of the jacobian of F at a point of (0, y2) ∈
U1 ∩ Sing(F) are given by t1(1, y2) and d1(1, y2), respectively, where

t1(x1, x2) = ∆2 + ∂P
(k−1)
1 /∂x2

d1(x1, x2) = ∆2∂P
(k)
1 /∂x2 − P

(k−1)
1 ∂∆1/∂x2.

(4) [0 : 0 : 1] is a singular point of F if and only if P
(k)
2 (0, 1) = ∆1(0, 1) = 0.

Moreover, if [0 : 0 : 1] ∈ Sing(F) then the trace and the determinant of the
jacobian at this point are given by t2(0, 1) and d2(0, 1), respectively, where

t2(x1, x2) = ∂∆1/∂x1 − P
(k−1)
2

d2(x1, x2) = ∆2∂P
(k)
2 /∂x1 − P

(k−1)
2 ∂∆1/∂x1.

Proof. Let k(F) = max{deg P1, deg P2}. Clearly if ∆0 = x2P
(k)
1 − x1P

(k)
2 is identi-

cally zero then both P1 and P2 must have degree k, thus proving (1). Since ∆0 = 0,
it follows from equation (2.3) that a singular point of F in L∞ ∩ U1 must satisfy
the equations

P k
1 (1, y2) = ∆1(1, y2) = 0,

which proves (2). The formulae in (3) follow from the computation of the partial
derivatives of P̂1 and ∆1(1, y2) + y1S at (0, y2). Note that except possibly for
[0 : 0 : 1], all the singular points of F at L∞ belong to U1. Finally, (4) follows from
an argument analogous to the above, applied to [0 : 0 : 1] ∈ U2.

The main theorem suggests the following strategy for checking whether a given
foliation has invariant algebraic curves:

First stage: Check whether F is a non-degenerate foliation with no positive
rational exponents. If it is not, then we cannot be certain that the third
stage will work properly.
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Second stage: Check whether ∆0(F) is zero or nonzero. If nonzero then L∞
is invariant under F , if zero then proceed to the third stage.

Third stage: Let F = F(P1, P2). Check whether there is a non-constant
polynomial f of degree d, where 0 < d ≤ k(F), and a polynomial g of
degree k(F) − 1 such that equation (2.1) holds. If no such polynomials
exist then F has no invariant curves.

The second stage is completely straightforward, and the third stage is also easy to
implement. We use the näıve approach which is already found in [Darboux 1878,
section 2, p. 71ff]. It consists in choosing generic polynomials for f and g, and
equating coefficients on both sides of (2.1). Gröbner bases can then be used to
check whether the system of equations admits a solution.

For the next algorithm it will be necessary to choose a term order in the set of
monomials in x1 and x2 for which the constants have degree zero. We will make use
of the usual multi-index notation, so that if α = (α1, α2) ∈ N2 then xα = xα1

1 xα2
2 .

Solution Algorithm.

Input: polynomials P1 and P2 of C[x1, x2].
Output: the degree of an algebraic solution of F(P1, P2), or 0 if F does not have
a solution of degree less than or equal to k(F).

(1) Let k = max{deg P1, deg P2} and compute ∆0 = x2P
(k)
1 −x1P

(k)
2 . If ∆0 6= 0

return 1.
(2) Let f =

∑
|α|≤k uαxα and g =

∑
|β|≤k−1 vβxβ and construct the ideal I

generated by the polynomials in the us and vs that are the coefficients of
the monomials xα in P1∂f/∂x1 + P2∂f/∂x2 − gf .

(3) Let U = {xα : |α| ≤ k}.
(4) Choose the element xα of highest order in U , and let JU be the ideal gen-

erated by I and uα − 1.
(5) If 1 /∈ JU then return |α| and stop.
(6) Add uα to the generators of I, remove xα from U and go back to step 4.

Two important points about the algorithm should be observed. First, we can
make uα = 1 in step 4 because equation (2.1) is homogeneous in the us. Second,
since f represents a constant polynomial when U = {1}, it follows that JU 6= (1) in
this case. In particular the algorithm always stops.

Of course the algorithm merely searchs for an algebraic solution with degree less
than or equal to the degree of the foliation. However, if the foliation has positive
rational exponents then these may not exhaust all the possible solutions.

Since we are using Gröbner bases only to check whether a given ideal is trivial or
not, we can choose any term order we want for this algorithm. In the next section
we show how Gröbner bases can be used to handle the first stage of the algorithm
sketched above.

Finally, it has been shown in [Carnicer 1994] that an upper bound on the degree
of an algebraic solution in terms of the degree of the foliation also exists for the
more general case of a nondicritical foliation. It would be very interesting to find
a way of using Gröbner bases to check nondicriticalness. For the definition see
[Carnicer 1994] and [Cano 1988]—one should be warned that this is not quite the
same as the ‘classical’ nondicritical condition.
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3. Rational exponents

The purpose of this section is to show how Gröbner bases can be used to im-
plement the first stage of the algorithm sketched in section 2. We will sum up the
various steps by which this is achieved in the algorithm at the end of the section.

Let x1 = z1/z0 and x2 = z2/z0 be coordinates in the open set U0 of P2,
and let F = F(P1, P2) as in the conventions of section 2. Let k = k(F) =
max{deg P1, deg P2} and ∆0 = ∆0(F) = x2P

(k)
1 − x1P

(k)
2 . As in section 2, we

will denote by JF the jacobian matrix of (P1, P2). Thus trJF and det JF are both
polynomials in C[x1, x2]. We will consider separately the singularities in U0, and
those in L∞.

Suppose first that u ∈ U0 is a singularity of F . The worst case occurs when u is
a degenerate singular point; that is, when one of the eigenvalues of JF (u) is zero.
To find out if there are any degenerate singular points it is enough to compute a
Gröbner basis for the ideal generated by P1, P2 and det JF . If the basis is not equal
to {1}, then F has degenerate singularities, and some of its exponents will not even
be well-defined.

So we may assume, from now on, that F has no degenerate singular points in
U0. Let λ1 and λ2 be the eigenvalues of JF (u) at some singular point u ∈ U0 of
F . Since we are assuming that both eigenvalues are nonzero, it follows that the
exponent η = λ1/λ2 is a well-defined complex number. Now

tr(JF (u))2

det JF (u)
=

(λ1 + λ2)2

λ1λ2
= η +

1
η

+ 2.

Thus if
θ0(x1, x2, s) = (det JF )s2 + (2 det JF − (trJF )2)s + det JF ,

and u = (u1, u2), then θ0(u1, u2, η) = 0.
The calculations above suggest that we should compute a Gröbner basis G of the

ideal generated by the polynomials P1, P2 and θ0 with respect to the lexicographical
order that has s < x1 < x2. Since the polynomials P1 and P2 have no common
factor, the system P1 = P2 = 0 has only finitely many solutions. Hence the same
must hold for P1 = P2 = θ0 = 0. By [Adams and Loustanau 1994, corollary 2.2.11,
p. 65] there must be a polynomial e0(s) in G that contains only the variable s. In
particular, if a complex number is an exponent of a singular point of F in U0 then
it is a root of e0(s). Thus if e0(s) has no positive rational roots, then F has no
positive rational exponents at those of its singularities that belong to U0.

This settles the problem so far as singularities in U0 are concerned. But, of
course, F could have singularities in L∞. One way to deal with these is to repeat
all the above for the vector fields that represent F in U1 and in U2. However, since
the computations of a Gröbner bases under the lexicographical order can be rather
slow it is convenient to use the formulae in the corollary of section 2 to speed up
the calculations.

First note that, by the corollary, F has singularities in L∞ ∩ U1 if and only if
the polynomials P

(k)
1 (1, y2) and ∆1(1, y2) have a common root. Since these are

polynomials in one variable, we can check whether they are co-prime using the
Euclidean algorithm.

Assuming that the polynomials have a common root, we must find whether F
has degenerate singularities on L∞ ∩U1 and, if not, whether there are any positive
rational exponents. The general strategy is the same as the one used for singularities
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in U0, and more details can be found in the description of the algorithm given below.
Note that the rôle of θ0 is played, in this case, by the polynomial

θ1(y2, s) = d1(1, y2)s2 + (2d1(1, y2)− t1(1, y2)2)s + d1(1, y2),

where t1(x1, x2) and d1(x1, x2) are defined in (3) of the corollary of section 2.
Finally, we must determine whether [0 : 0 : 1] is a singularity of F , and compute its
exponent if it is non-degenerate. To do this we use (4) of the corollary of section 2
just as we used (2) and (3) for the singularities in L∞ ∩ U1.

Next we translate these ideas into an algorithm which determines whether a
given foliation has any positive rational exponents.

Rational Exponents Algorithm.

Input: polynomials P1 and P2 of C[x1, x2].
Output: true if F(P1, P2) has no positive rational exponents and false otherwise.

(1) Use Gröbner bases to check whether the ideal generated by P1, P2 and
det JF contains 1. If it does not return false and stop.

(2) Define θ0(x1, x2, s) as above and use Gröbner bases with respect to the
lexicographical order s < x1 < x2 to find a polynomial e0(s) in the variable
s alone, that belongs to the ideal generated by P1, P2 and θ0.

(3) Check whether e0(s) has a positive rational root, if it does return false.
(4) Compute g(y2) = gcd(P (k)

1 (1, y2), ∆1(1, y2)).
(5) If g = 1 return true; otherwise compute gcd(g(y2), d1(1, y2))—see the corol-

lary of section 2 for the definition of d1. If it is not 1, return false.
(6) Define θ1(y2, s) as above, and use Gröbner bases, with respect to the lexi-

cographical order s < y2, to compute a polynomial e1(s) on the variable s
alone, that belongs to the ideal generated by

P
(k)
1 (1, y2), ∆1(1, y2) and θ1(y2, s).

(7) Check whether e1(s) has a positive rational root, if it does return false.
(8) Compute P

(k)
2 (0, 1) and ∆1(0, 1). If one of them is nonzero, return true; if

both are zero and d2(0, 1) = 0, return false.
(9) Compute

θ2(s) = (d2(0, 1)s2 + (2d2(0, 1)− t2(0, 1)2)s + d2(0, 1).

If θ2(s) has a positive rational root, return false; otherwise, return true.

When implementing this algorithm it is a good idea to check first whether the
system P1 = P2 = 0 has dimension zero or not. Of course if it does not, then the
polynomials do not determine a foliation in the sense of section 2.

Our implementation of this algorithm using the computer algebra system Sin-
gular has two peculiarities that should be mentioned. First, to check whether
the one variable polynomials e0(s) and e1(s) have a positive rational root we first
factorize them using the Singular command factorize. Second, when comput-
ing Gröbner basis with respect to the lexicographical order we use the Singular
command stdfglm to speed up the calculations; see [Greuel et al. 1998, p. 236]
and [Adams and Loustanau 1994, pp. 67 and 68, exercises 2.2.7 and 2.2.8] for the
algorithm behind this command.
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4. The examples

Although it is known that the set of foliations of P2 without algebraic solutions
is dense, a search of the literature reveals a dearth of concrete examples. In fact, all
examples are variations of the Jouanolou foliation; see [Jouanolou 1979, p. 160ff].
A very interesting family of foliations of this sort is the one discovered by Żo la̧dek
in [Żo la̧dek 1998]. Unlike the foliations considered in this paper, the foliations in
Żo la̧dek’s family can have degenerate singularities for some choice of parameters.

However, both Jouanolou’s foliation and the non-degenerate foliations in the
examples of Żo la̧dek are of Poincaré type; that is, none of their exponents are
positive real numbers. In fact, in all these examples the exponents of the non-
degenerate foliations are not even real numbers. For the relevance of the Poincaré
hypothesis to this problem, see [Lins Neto 1988] or [Cerveau and Lins Neto 1991]

In this section we give an example of a simple foliation that we have shown to
have no algebraic solutions using our implementation of the algorithms solution
and rational exponents in the computer algebra system Singular. It turns out
that, unlike the previously known examples, this foliation has exponents that are
positive real numbers; so they are not of Poincaré type.

Let

P1 = 2x3
1 + 3x2

1x2 + ax2
2 + 1 and P2 = 2x2

1x2 + 3x1x
2
2 + bx2

1 + 1,

where a · b 6= 0 and 8a + 27b 6= 0. Using Gröbner bases and the method of undeter-
mined coefficients one shows that x1P2−x2P1 is an irreducible polynomial of degree
3 if a 6= b. In particular gcd(P1, P2) = 1, and we get a family of foliations F(P1, P2).
Since this family is parametrized by a and b we will denote it by F(a, b) for short.
One readily checks that ∆0(F(a, b)) = 0 and that ∆1(F(a, b)) = ax3

2 − bx3
1. In

particular, the line at infinity is not invariant under F . Moreover, the system

P
(k)
1 (1, y2) = 2 + 3y2 = 0 and ∆1(1, y2) = ay3

2 − b = 0,

does not have a solution because 8a + 27b 6= 0. Since we also have that ∆1(0, 1) =
a 6= 0, we conclude that Sing(F) ⊂ U0.

Let I = {(a, b) ∈ Z2 : a 6= b and 1 ≤ a, b ≤ 10}. Using a computer and the
rational exponents algorithm it takes less than a minute to check that for (a, b) ∈ I
the foliation F(a, b) has a rational exponent only when a = 9 and b = 4. However,
even in this case the exponent is −1, a negative rational number. On the other hand,
using a combination of Gröbner bases and numerical computations in Maple V.5,
we have shown that if (a, b) ∈ I and F(a, b) has a positive real exponent then
either b = 1, or a = 3 and b = 2. Moreover all these real exponents occur at
a real singularity. Finally, using an implementation of the solutions algorithm in
Singular it is easy to check that F(a, b) does not have an algebraic solution for
any (a, b) ∈ I.
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Let us illustrate the output of the algorithms when a = 2 and b = 3. In the
notation used to describe the rational exponents algorithm, we have that

e0(s) = 757707876887s14 − 1515415753774s13 − 1582513020691s12

− 6026827836972s11 + 11777436443567s10 + 29426173550670s9+

5040018620749s8 − 81748114201576s7 + 5040018620749s6+

29426173550670s5 + 11777436443567s4 − 6026827836972s3−
1582513020691s2 − 1515415753774s + 757707876887.

This polynomial is irreducible over Q, so it has no rational roots. Using the solution
algorithm we find that there is no invariant curve of degree less than or equal to
3. Hence by the theorem of section 2 we conclude that F(2, 3) has no algebraic
solutions.

Now, it turns out that e0(s) has two positive real roots, namely 0.7386877578 . . .
and its reciprocal. Although all exponents of F(2, 3) are roots of e0(s), the con-
verse need not be true. However, a numerical computation shows that one of the
singularities of F(2, 3) has real coordinates, and these roots turn out to be the two
exponents of this singularity. In view of these results, it seems reasonable to pose
the following two questions:

• Are there any non-zero complex numbers a and b, for which (a − b)(8a +
27b) 6= 0 and F(a, b) has an algebraic solution?

• Is the set of all (a, b) for which F(a, b) has a real exponent dense in C2 ?
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du premier degré, Bull. des Sc. Math. (Mélanges) (1878), 60–96, 123–144, 151–200.

[Greuel et al. 1998] G.-M. Greuel, G. Pfister, and H. Schönemann, Singular version 1.2 User
Manual, In Reports On Computer Algebra, number 21, Centre for Algebra, University of

Kaiserslautern, June 1998, http://www.mathematik.uni-kl.de/~zca/Singular
[Jouanolou 1979] J. P. Jouanolou, Equations de Pfaff algébriques, Lect. Notes in Math., 708,
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dre, Rendiconti del Circolo Matematico di Palermo, 11 (1891), 193–239. Reprinted in his

Oeuvres, t. III, p. 35–58.

[Soares 1993] Marcio G. Soares On algebraic sets invariant by one dimensional foliations on
CP(3), Ann. Sc. de l’Institute Fourier, 43, (1993), 143–162.
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